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The occurrence frequency of the {110} twin in aragonite is explained by the

existence of an important substructure (60% of the atoms) which crosses the

composition surface with only minor perturbation (about 0.2 Å) and constitutes

a common atomic network facilitating the formation of the twin. The existence

of such a common substructure is shown by the C2/c pseudo-eigensymmetry of

the crystallographic orbits, which contains restoration operations whose linear

part coincides with the twin operation. Furthermore, the local analysis of the

composition surface in the aragonite structure shows that the structure is built

from slices which are fixed by the twin operation, confirming and reinforcing the

crystallographic orbit analysis of the structural continuity across the composi-

tion surface.

1. Introduction

Aragonite is the high-pressure polymorph of CaCO3, meta-

stable at ambient conditions, which occurs also as an impor-

tant component of coral skeletons (Higuchi et al., 2014). A

salient feature of this mineral is its frequent twinning on {110}.

The dihedral angle between (110) and (100) is about 58�: this

favours the frequent occurrence of {110} twins as ‘thrillings’,

whose morphology simulates a hexagonal single crystal. For

this reason, it has been called a ‘mimetic twin’ (Tomkeieff,

1925). A second twin, on {103}, is much less common and

corresponds to a hybrid twin with two concurrent sublattices

(the analysis of this twin is given in Nespolo & Ferraris, 2009).

Symmetry beyond space-group operations plays a crucial

role in the aragonite {110} twin. This has been pointed out by

Makovicky (2012), who analysed the local symmetry of the

aragonite structure and gave an OD [order–disorder, see e.g.

Ďurovič (1997) for a simple introduction or Ferraris et al.

(2008) for a comprehensive account] interpretation of {110}

twinning. Here we emphasize the role of pseudo-symmetry

and show that the crystallographic orbits building up the

structure of aragonite have an approximate eigensymmetry

which explains a high degree of structural restoration across

the composition surface.

2. Crystallographic orbits approach to the structural
study of twins

The general approach of analysing the structure of twins via

the restoration of crystallographic orbits is described in

Marzouki et al. (2014a), together with the application to the

analysis of melilite. The more complex case of staurolite is

analysed in Marzouki et al. (2014b). We therefore restrict
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ourselves to presenting the fundamental principles; the reader

will find more details in the two quoted articles.

Each atom in the asymmetric unit of a crystal structure

represents an infinite set of atoms equivalent by symmetry,

called a crystallographic orbit. Let E be the eigensymmetry of

this orbit, i.e. the group of all motions mapping the orbit to

itself. The intersection of the eigensymmetries of all crystal-

lographic orbits in a crystal structure is the space group G of

that structure: G ¼ \iEi. The eigensymmetry of each orbit can

be equal to or a proper supergroup of the space group of the

structure: one speaks of characteristic and non-characteristic

orbits, respectively.

The twin operation does not belong to the point group of

the crystal but it may belong, exactly or approximately, to the

point group of the eigensymmetry of one or more non-

characteristic crystallographic orbits building the structure of

that crystal. When this is the case, the corresponding crystal-

lographic orbits cross the composition surface of the twin

(almost) unperturbed and define a substructure common to

the twinned individuals. If this substructure represents a

significant portion of the structure of the crystal, the occur-

rence probability of the twin is high.

If the twin operation does not belong to the point group

of the eigensymmetry of a crystallographic orbit in G, it may

still belong to that of a sub-orbit. This sub-orbit is obtained

by taking the maximal subgroup H of G which is compatible

with the twin lattice. A crystallographic orbit in G splits, in

general, into two or more orbits under the action of H

(Wondratschek, 1993) and the twin operation may belong to

the point group of the eigensymmetry of one or more of these

split orbits.

It is to be emphasized that the twin operation maps the

orientation of twinned crystals and is therefore a point-group

operation. Interpreted as a space-group operation it is only

determined up to its translational part. The actual operation

that maps the substructures has, however, a specific transla-

tional part: it is called restoration operation for the sake of

clarity, a term reminiscent of the concept of restoration index

introduced by Takeda et al. (1967) as a structural counterpart

of the twin index. However, to avoid cumbersome formula-

tions we will occasionally say that the twin operation maps an

atom or a substructure, silently implying that some symmetry

operation with the twin operation as linear part (i.e. a

restoration operation) maps the substructure.

2.1. Physical meaning of the pseudo-eigensymmetry and
tolerance on the atomic quasi-restoration

The composition surface of a twin represents a discontinuity

in the atomic structure. As discussed above, for a twin to exist

and be physically stable, a substructure common to the indi-

viduals should exist. This substructure is expected to cross the

composition surface more or less unperturbed. This means that

some crystallographic orbits, or sub-orbits, experience a

limited deviation at the composition surface, i.e. that their

eigensymmetry is close to a space group which contains a

restoration operation whose linear part is the twin operation.

Let dmin be the minimal distance between the position to

which a chosen atom in a crystallographic orbit O is mapped

under the restoration operation t and the atoms in O. If

t 2 E(O), then dmin = 0 for all atoms in O. If t is only a pseudo-

symmetry of O, then dmin > 0 and its value is a measure for the

degree of quasi-restoration. A question naturally arises about

the maximal acceptable value of dmin: in the previous examples

of melilite and staurolite (Marzouki et al., 2014a,b) we have

indicated, as a rule of thumb, a value close to the atom radius

(ionic or covalent, depending on the type of bond), because if

the approximation on the atomic restoration is beyond this

limit the atomic separation on the two sides of the composition

surfaces seems too large to justify the existence of a common

substructure. In the two previous examples, and especially for

the case of staurolite, the restoration obtained was signifi-

cantly better than this intuitive threshold. As we are going to

show, the same is true also for aragonite. Clearly, a larger

number of cases has to be analysed before a general conclu-

sion can be satisfactorily drawn but a clear trend seems

already to be emerging.

A related question arises about the possibility of having

sub-orbits with a better restoration than the full orbit. Suppose

that an orbit is restored with a tolerance dG, and that the sub-

orbits obtained by splitting in H are restored with tolerances

dH1 through dHn, where n is the number of sub-orbits in which

the original orbit splits when going from G to H. If dHi is

significantly smaller than dG for some of the i, the atomic

restoration is better described by the split orbits even if dG is

within the accepted tolerance. However, when dG is small, the

difference between dG and dHi does not really have a physical

meaning and the splitting scheme does not give additional

information for the description of the atomic restoration, as

we are going to see for the X atoms in aragonite.

3. Analysis of the {110} twin in aragonite via the
crystallographic orbits approach

A structure analogous to that of aragonite is found also in the

carbonates hosting a cation bigger than calcium: witherite

BaCO3, strontianite SrCO3 and cerussite PbCO3, as well as in

nitre KNO3. The considerations developed in this section

apply to all the isotypes; for the sake of generality, we describe

the general formula as XYO3, with the big cations (Ca, Ba, Sr,

Pb, K) in the X site and small ones (C, N) in the Y site. These

minerals crystallize in space groups of type Pmcn (non-

standard setting of Pnma No. 62: transformation from Pnma to

Pmcn: bca and yzx; from Pmcn to Pnma: cab and zxy),1 with X

and Y in Wyckoff positions 4c, and the oxygen atoms

distributed over two different Wyckoff positions: 4c and

8d. We analyse the aragonite structure reported by Caspi

et al. (2005) for which a = 4.96183, b = 7.96914, c = 5.74285 Å,

whose atomic coordinates are given in Table 1 (coordinates

expressed with respect to the standard setting Pnma of G).
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1 The twin law {110} is expressed with respect to a morphological cell having
a:b:c ’ 0.6:1:0.7 (Barry & Mason, 1959), which corresponds to the Pmcn
setting of the space group.



3.1. The twin lattice of aragonite

We denote by (abc)I the basis for an individual and by

(abc)T the basis of the twin lattice. The direction quasi-normal

to the (110) twin plane is [310]; the twin plane can thus also be

regarded as the geometric element2 of m[310]. The following

analysis is performed from the standard setting of the space

group, Pnma, in which the cell parameters become a = 5.74285,

b = 4.96183, c = 7.96914 Å, the twin plane (011) and the

direction quasi-normal to it becomes [031], so that in this

setting the twin plane can be regarded as the geometric

element of m[031]. The shortest directions contained in (011)

are [100] and [011]. The twin lattice LT spanned by the twin

plane and the direction quasi-normal to it is obtained from

the lattice L of the individual by the relation LT ¼ L \ tL

(Marzouki et al., 2014a), its unit cell is spanned by the three

vectors [031], [011], [100]. However, the vector 1
2([031] +

[011]), which relates the origin and the 020 node of L, also

belongs to the twin lattice, hence the cell of LT built in this way

is C-centred (Fig. 1). The twin index is 2 and the obliquity is

3.74� (computation performed with the software GEMINO-

GRAPHY: Nespolo & Ferraris, 2006). Twinning is by reticular

pseudo-polyholohedry, meaning that the twin lattice belongs

to the same crystal family as the lattice of the individual,

within the approximation represented by the obliquity

(Nespolo & Ferraris, 2004).

The maximal subgroup H of G compatible with the twin

lattice is H ¼ G \ tG t�1 = C1: indeed, among the symmetry

elements of Pnma, neither the rotation/screw axes nor the

mirror/glide planes are parallel in the two orientations of G

and tG t�1 so that none of them is retained in the intersection.

Only the inversion centre, being a zero-dimensional point,

remains in the intersection. The bases (abc)I for G and (abc)T

for H are related by the following transformation:

ðabcÞIP ¼ ðabcÞT; P ¼

0 0 1

1 3 0

1 1 0

0
@

1
A; ð1Þ

which results in the cell parameters for the twin lattice a =

9.3876, b = 16.8845, c = 5.74285 Å, �= 90, �= 90, � = 86.26� and

in this setting the cell of LT is the standard C-centred cell.

Equation (1) defines the twin plane as the (010) plane of the

twin lattice; the axial setting of H is therefore the standard

monoclinic b-unique. However, the cell parameters of LT show

that the symmetry-unrestricted angle � is actually 90� whereas

the � angle, which would be symmetry restricted in a truly

monoclinic group, actually deviates from 90� by an amount

that corresponds precisely to the obliquity and represents a

measure of the pseudo-symmetry of the twin lattice.

The extension of the point group ofH by the twin operation

results in a (pseudo)-monoclinic group, either C2/m or C2/c.

3.2. Crystallographic orbits whose eigensymmetry is a
supergroup of G

For the crystallographic orbit defined by the Ca cations in

the aragonite structure (X cations for the isotypes) the

minimal supergroup which contains a mirror plane whose

linear part coincides with the twin plane is E = P63/mmc (No.

194). The transformation matrix from G to E is (001=1
2

1
2 0= 1

2
1
2 0)

with origin shift 0 1
4

1
4. The inverse transformation

(011=011=100) – origin shift 1
2 00 – applied to [031] gives [120],

which is a symmetry direction of P63/mmc normal to which we

have the (010) c glide of E. This is precisely the restoration

operation for the X cations whose linear part coincides with

the twin operation (once the axial transformation is taken into

account).3 The degree of approximation in the restoration is

the minimal distance between atoms quasi-restored by the

twin operation. This can be obtained by the PSEUDO routine

(Capillas et al., 2011) at the Bilbao Crystallographic Server

(Aroyo et al., 2006), and coincides with the maximal distance

(�max) between atoms produced by the additional symmetry

operations of E with respect to G. For the Ca atoms in

aragonite this distance is 0.1155 Å, i.e. an excellent degree of

quasi-restoration. Considering the relatively large ionic radius
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Figure 1
The twin lattice of the aragonite (110) twin – (011) in the standard Pnma
setting of the space group – seen in projection along the a axis of G. The
bH axis is direction [031] in Pnma. Red nodes are (quasi) restored by the
twin operation: they represent half of the lattice nodes of G so that the
twin index is 2.

Table 1
Atomic coordinates of aragonite in the Pnma setting of the space group.

Atoms Wyckoff position Coordinates

X (Ca) 4c 0.75985, 1
4, 0.41502

Y (C) 4c 0.91760, 1
4, 0.76194

OA 4c 0.90547, 1
4, 0.92238

OB 8d 0.91275, 0.47499, 0.68012

2 A geometric element is defined, for any given symmetry operation, as the
point, line or plane fixed by the operation after removing any intrinsic
translation. The geometric element allows the operation to be located and
oriented. It differs from a symmetry element in that the latter is the
combination of a geometric element with the set of symmetry operations
having this geometric element in common (for details, see de Wolff et al.,
1989).

3 Between G and E the intermediate minimal supergroup Cmcm (No. 63)
exists, which however does not contain a symmetry operation with a linear
part coinciding with the twin operation. The increase in the translation
subgroup is required to turn the original [031] direction of G into a symmetry
direction of E.



of the X cations (about 1 Å for calcium), the restoration of the

whole orbit is realized within about 10% of this radius, which

means only a small perturbation in the substructure continuity

across the composition surface. As we are going to show in the

next section, if one checks the restoration of the sub-orbits

into which the X orbit splits under H, one observes an even

better restoration for half of the sub-orbits underH (0.0233 Å

instead of 0.1155 Å), but this does not add further physically

meaningful significance to the above analysis because in both

cases the degree of approximation is much smaller than the

ionic radius.

The same analysis applied to the Y cations results in exactly

the same eigensymmetry with the same transformation matrix.

However, the degree of quasi-restoration is much worse – for

carbon in aragonite it is 0.9641 Å, which is larger than the

covalent radius. The Y orbit is therefore badly restored by the

twin operation. However, for half of the carbon atoms the

quasi-restoration is actually much better, as we are going to

see by analysing the distribution of Y cations in terms of theH

subgroup.

For the oxygen atoms, no supergroup of G containing the

twin plane as symmetry plane exists within an acceptable

approximation and the analysis in terms of split orbits is

mandatory.

3.3. Crystallographic orbits whose eigensymmetry is a
supergroup of H

The Y orbit of G (in Wyckoff position 4c) splits into eight

orbits (all in Wyckoff position 2i) in the standard (P1) setting

of H. These are however pairwise related by the C-centring

vector so that actually splitting is reduced to four orbits (in

Wyckoff position 2i) in the C1 setting ofH (Table 2). The four

atoms belonging to the same split orbit in the unit cell of C1

correspond to four translationally equivalent atoms in

different unit cells of G, i.e. atoms related by integer transla-

tions in G. The pairwise unions Y1 [ Y2 and Y3 [ Y4 possess

eigensymmetry C2/m and C2/c, which correspond to slightly

different restoration (0.1010 and 0.1680 Å, respectively) but

the origin is not the same for the two sub-orbits: it coincides

with that of H for Y1 [ Y2 whereas it is shifted by 1
4

1
4 0 for

Y3 [ Y4 (Table 3). Considering this origin shift, the physical

plane x0z acts as m mirror or c glide for Y1 [ Y2 but as a glide

or n glide for Y3 [ Y4, whereas the physical plane x1
4z acts as a

glide or n glide for Y1 [ Y2 but as m mirror or c glide for Y3 [

Y4. In other words, one of the two unions is well restored

(within less than 0.2 Å) by one physical plane, whereas the

other union is restored much more poorly (with deviation

about 1 Å, larger than the covalent radius and hardly mean-

ingful) by the same physical plane. The role is exchanged every

b/4. When the union of the four split orbits, which corresponds

to the unsplit orbit in G, is considered, the same eigensym-

metry C2/m or C2/c is found again but this time the degree of

eigensymmetry corresponds to the highest �max, 0.9518 or

0.9612 Å, respectively. The latter corresponds precisely to the

degree of eigensymmetry found for the Y orbit of G.

Quite obviously, in a case like that of the Y cations, when

the realization of the twin operation in the pseudo-

eigensymmetry for an orbit under G gives a large deviation

from restoration, the analysis of the split orbits in H is

mandatory to explain the formation of the twin. On the other

hand, for the X cations the excellent restoration of the whole

orbit does not require such an analysis. However, one has to

check the position of the pseudo-symmetry element respon-

sible for this restoration with respect to the setting of H,

because it is in this setting that the restoration of half of

the Y cations has been obtained. It may happen that the c

glide belonging to E(X) coincides with either of the mirrors
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Table 2
Coordinates of the Y cations in the axial setting of H ¼ C1.

The rows give the split orbits under H. The coordinates in the C1 setting are obtained from those in the original Pnma setting by transforming them with the
inverse basis transformation P�1 = (0 1

4
3
4/0

1
4

1
4/1 0 0). The 16 Y cations in the twin cell are obtained from the coordinates given in Table 1 by first expanding the given

position to the four positions in the unit cell of the individual equivalent under Pnma and then adding to each of these positions coset representatives for the
(centred) twin lattice with respect to the lattice of the individual. These coset representatives may be chosen as (0, 0, 0), (0, 1, 0), (0, 2, 0), (0, 3, 0). Taking the first
atom as representative Y, the other atoms in the split orbit are located at�Y, Y + (1

2,
1
2, 0),�Y + (1

2,
1
2, 0). The representatives are chosen with minimal y in their split

orbit.

Orbit Y �Y Y + (1
2,

1
2, 0) �Y + (1

2,
1
2, 0)

Y1 0.24105, 0.00299, 0.91760 0.75895, 0.99701, 0.08240 0.74105, 0.50299, 0.91760 0.25895, 0.49701, 0.08240
Y2 0.74105, 0.00299, 0.58240 0.25895, 0.99701, 0.41760 0.99105, 0.75299, 0.91760 0.00895, 0.24701, 0.08240
Y3 0.49105, 0.25299, 0.91760 0.50895, 0.74701, 0.08240 0.24105, 0.50299, 0.58240 0.75895, 0.49701, 0.41760
Y4 0.99105, 0.25299, 0.58240 0.00895, 0.74701, 0.41760 0.49105, 0.75299, 0.58240 0.50895, 0.24701, 0.41760

Table 3
Eigensymmetry of pairs of Yi orbits under H ¼ C1.

The Wyckoff positions are given for the idealized structure having the
(pseudo-)eigensymmetry group E as proper symmetry group. To obtain the
idealized structure, the atoms have to be moved by the given distance dmin. In
some cases, both single orbits in a pair are invariant under the restoration
operation. These cases are indicated by giving two Wyckoff positions.

Orbits E

Wyckoff
position
for E (P, p) dmin (Å)

Restoration
operation
(with respect
to the origin
of H)

Y1 [ Y2 C2/m 2 � 4i (I | 000) 0.1010 m x0z, a x1
4z

C2/c 8f (I | 000) 0.1680 c x0z, n x1
4z

C2/m 4g + 4h (I | 1
4

1
40) 0.9612 m x1

4z, a x0z

C2/c 8f (I | 1
4

1
40) 0.9518 c x1

4z, n x0z

Y3 [ Y4 C2/m 2 � 4i (I | 1
4

1
40) 0.1010 m x1

4z, a x0z

C2/c 8f (I | 1
4

1
40) 0.1680 c x1

4z, n x0z

C2/m 4g + 4h (I | 000) 0.9612 m x0z, a x1
4z

C2/c 8f (I | 000) 0.9518 c x0z, n x1
4z



belonging to E(Yi), restoring thus both types of cations, or not,

in which case the two types of cations would be restored for

different positions of the twin element, i.e. at different

moments during the crystal growth. To find the answer one has

simply to repeat the above analysis in H performed for the Y

cations this time for the X cations. Tables 4 and 5 are the

equivalent of Tables 2 and 3. The same conclusions can be

drawn for the Xi orbits as for the Yi orbits. However, this time

the difference between the degree of restoration of the two

pairs of orbits is negligible (0.0233 Å versus 0.1155 Å) and

justifies considering the union of all four split orbits as

restored within the slightly larger approximation, which

reproduces the result obtained in the previous section for

E(X) starting from G.

Finally, the analysis of the oxygen orbits leads exactly to the

same conclusions as those obtained for the Y cations (Tables 6,

7 and 8).

The general conclusion that can be drawn about the quasi-

restoration in the structure of aragonite by the twin operation

is that each b/4 (of the H-cell) all the X cations, half of the Y

cations and half of the oxygen atoms are restored, with an

exchange of the restored and non-restored atoms every b/4

(Table 9).

Actually, all the restoration rates given do not take into

account the deviations from the exact metric of E. For the Ca

cation, the P63/mmc supergroup of G is only approximated

because the � angle is 116.18� instead of 120�. For the other

orbits, the monoclinic supergroup of H is only approximated

because the � angle is 86.26� instead of 90�. As a consequence,

the degree of quasi-restoration is slightly underestimated. To

obtain a precise value, this metric deviation should be taken

into account. In the adjusted metric, the linear part of the twin

operation is no longer a unimodular matrix. However, the

correction obtained by using this matrix is within 10% of the

minimal distance obtained by PSEUDO and does not affect

the conclusions drawn from the approximate treatment

neglecting this metric deviation. For example, the union of the

split oxygen orbit OA2 [ OB5 is quasi-restored with dmin =

0.2154 Å, while this union is quasi-restored with dmin =

0.2336 Å after applying a Gram–Schmidt process (Cheney &

Kincaid, 2010) to the aragonite twin basis. Since the effect is

minimal, the small angular deviations are neglected

throughout this article.

The crystallographic orbits approach, which represents a

global analysis of the structure continuity across the compo-

sition surface, shows the existence of two pairs of restoration

operations for the aragonite (110) twin: the c-glide reflection
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Table 5
Eigensymmetry of pairs of Xi orbits under H ¼ C1.

The conventions are the same as those in Table 3.

Orbits E

Wyckoff
position
for E (P, p) dmin (Å)

Restoration
operation
(with respect
to the origin
of H)

X1 [ X2 C2/c 8f (I | 000) 0.0233 c x0z, n x1
4z

X3 [ X4 C2/c 2 � 4e (I | 000) 0.1155 c x0z, n x1
4z

X1 [ X2 C2/c 2 � 4e (I | 1
4

1
40) 0.1155 c x1

4z, n x0z

X3 [ X4 C2/c 8f (I | 1
4

1
40) 0.0233 c x1

4z, n x0z

Table 4
Coordinates of representatives for the split orbits of the X cations under the action of H.

The representatives are chosen to have minimal y coordinate. The full split orbits are obtained as explained in the caption of Table 2.

Orbit X1 X2 X3 X4

Representative 0.75123, 0.16626, 0.75985 0.25123, 0.16626, 0.74015 0.49877, 0.08375, 0.24015 0.99877, 0.08375, 0.25985

Table 7
Coordinates of representatives for the split orbits of the OB anions under the action of H.

The representatives are chosen to have minimal y coordinate. The full split orbits are obtained as explained in the caption of Table 2.

Orbit OB1 OB2 OB3 OB4

Representative 0.89135, 0.21122, 0.08725 0.99615, 0.17628, 0.58725 0.75385, 0.07372, 0.08725 0.39135, 0.21122, 0.41275

Orbit OB5 OB6 OB7 OB8

Representative 0.35865, 0.03878, 0.91275 0.25385, 0.07372, 0.41275 0.49615, 0.17628, 0.91275 0.85865, 0.03878, 0.58725

Table 6
Coordinates of representatives for the split orbits of the OA anions under the action of H.

The representatives are chosen to have minimal y coordinate. The full split orbits are obtained as explained in the caption of Table 2.

Orbit OA1 OA2 OA3 OA4

Representative 0.12929, 0.20690, 0.09453 0.62071, 0.04310, 0.59453 0.12071, 0.04310, 0.90547 0.62929, 0.20690, 0.40547



cx,0,z located at y = 0 gives, when being composed with the

centring translation (1
2,

1
2, 0), the n glide n(1/2, 0, 1/2)x,1/4,z,

the c glide cx,1/4,z located at y = 1
4 gives upon composition with

the translation (1
2,

1
2, 0) the n glide n(1/2,0,1/2)x,0,z. The pairs

of restoration operations differing only by the centring

translation clearly restore the same subset of the atomic

structure.

4. Local analysis via layer groups

The analysis of twins via crystallographic orbits investigates

the structural continuity across the composition surface. This

can take an irregular shape for zero obliquity but is limited to

a plane for non-zero obliquity (Friedel, 1904), although in the

very rare case of monoperiodic twins the twinned individuals

share a single lattice direction (Friedel, 1933). The intrinsic

symmetry properties of the composition surface can be

described by subperiodic groups: layer groups in the case of a

plane and rod groups in the case of a line. In the case of

aragonite, the composition surface is a plane (the geometric

element of the twin operation) and we will from now on

restrict ourselves to the discussion of layer groups (rod groups

being analogous, but simpler).

The composition plane is a two-dimensional plane inter-

secting the crystal structure and is called a section plane.

However, since a crystal structure is built from physical

objects, it makes sense to replace the abstract plane of thick-

ness zero by a slice of finite (usually small) width which

extends symmetrically around the section plane and contains

the atoms close to it. The symmetry group of such a slice has a

translation subgroup with translations along two independent

directions and is therefore a sectional layer group. It is clear

that this sectional layer group contains all those symmetry

operations of the space group G which fix the composition

plane. But the crucial question in the analysis of twins is

whether the layer group is actually larger than this group

induced by the space group and contains an additional

symmetry operation having the twin operation as linear part.

Of course, as in the analysis via crystallographic orbits, the

twin operation may only be a pseudo-symmetry of the layer

and it may be necessary to exclude a (hopefully small) part of

the atoms in the chosen slice.

To analyse the layer-group symmetry, let d be a vector

perpendicular to a section plane S. Owing to the periodicity of

the crystal pattern along d, to find all different types of

sectional layer groups for slices perpendicular to d it is enough

to consider section planes at heights s with 0� s < 1 (fractional

coordinate along d). The sectional layer group L will always

contain translations along two independent directions within

the plane, which we assume to form a crystallographic basis for

the lattice of translations fixing the section plane. To keep in

line with the axial setting (b-unique monoclinic) used in the

previous section, the in-plane vectors will be taken as a0 and c0;

a point p in the section plane at height s is then given by xa0 +

sd + zc0.

Let g be an operation of a sectional layer group. Then the

linear part of g maps d either to +d or to �d. In the former

case, g is called side-preserving, in the latter case it is called

side-reversing (� and � operations, respectively, in the OD

language: Ďurovič, 1997). Moreover, since the section plane

remains fixed under g, the vectors a0 and c0 are mapped to

linear combinations of themselves by the linear part of g.

Therefore, with respect to the (usually non-conventional)

basis a0; d; c0 (Fig. 2) the linear part of g is represented by a

matrix M0g of the form

M0g ¼

�11 0 �13

0 �22 0

�31 0 �33

0
@

1
A:

In order to determine which elements of the space group G fix

the section plane, i.e. belong to the sectional layer group L, the

elements of G are expressed with respect to the coordinate

system with basis a0, d, c0, keeping the origin. If Mg is the

matrix of the linear part of g with respect to the original basis

a, b, c and P is the basis transformation such that (a, b, c)P =

(a0, d, c0), the coordinate transformation results in the matrix

M0g = P�1 Mg P for the linear part and in a vector (t1, t2, t3) for

the translation part. M0g has to be of the form given above,

otherwise the section plane is not fixed by g. Assuming that

this is the case, i.e. that g does indeed belong to the layer group

L; �22 can only have the values 1 or �1:
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Table 8
Eigensymmetry of pairs of oxygen orbits under H ¼ C1.

The conventions are the same as those in Table 3.

Orbits E

Wyckoff
position
for E (P, p) dmin (Å)

Restoration
operation
(with respect
to the origin
of H)

OA2 [ OB5 C2/c 8f (I | 000) 0.2154 c x0z, n x1
4z

OA3 [ OB8 C2/c 8f (I | 000) 0.2154 c x0z, n x1
4z

OB6 [ OB3 C2/c 8f (I | 000) 0.0718 c x0z, n x1
4z

OA1 [ OB4 C2/c 8f (I |14
1
40) 0.2154 c x1

4z, n x0z

OA4 [ OB1 C2/c 8f (I |14
1
40) 0.2154 c x1

4z, n x0z

OB2 [ OB7 C2/c 8f (I |14
1
40) 0.0718 c x1

4z, n x0z

Table 9
Summary of the atomic restoration.

Restoration
operation X Y O All atoms

cx,0,z and nx1
4z

16/16 (100%) 8/16 (50%) 24/48 (50%) 48/80 (60%)
nx,0,z and cx1

4z
16/16 (100%) 8/16 (50%) 24/48 (50%) 48/80 (60%)

Figure 2
Definition of the axial setting for the layer group.



(a) If �22 = 1, g is side-preserving, M0g � d = d and t2 must

necessarily be zero, since otherwise the plane is shifted along

d. Such an element belongs to the layer group at any height s.

(b) If �22 = �1, g is side-reversing, M0g � d = �d and a plane

situated at height s along d is only fixed if t2 = 2s.

In the case of aragonite, the scanning direction d is normal

to the twin plane and thus d = [031]. Since the chosen basis of

the twin lattice consists of two vectors in the twin plane and

one normal to it (with the slight deviations resulting from the

obliquity), the transformation to the basis for the layer group

can be taken as

P ¼

0 0 1

1 3 0

1 1 0

0
@

1
A;

which is precisely the transformation to the twin basis. This

means that the twin basis a0, d, c0 with d = [031], a0 = [011] and

c0 = [100] is also chosen as the basis for the layer group. The

layer groups are found to be as follows:

(a) For �22 = 1, the only side-preserving element of G fixing

the section layer is the identity and the layer group L is of type

p1 [No. 1, International Tables for Crystallography Vol. E

(ITE): Kopský & Litvin, 2010].

(b) For �22 = �1, the only side-reversing elements of G are

the inversion for y = 0 and the twofold screw c axis 2 (0, 0, 1
2)

1
8,

1
8, z located at y = 1

8. As a consequence, the layer group L is of

type p1 (No. 2, ITE) at y = 0 or of type p21 (No. 9, ITE) at y = 1
8.

Owing to the condition t2 = 2s equivalent elements are found

at y = 1
2 and y = 5

8. But due to the C-centring, the periodicity of

the side-reversing elements is actually 1
4.

Summarizing, the layer group L induced by the symmetry

operations of G is of type p1 (No. 2, ITE) for s = 0, 1
4,

1
2 and 3

4, of

type p21 (No. 9, ITE) for s = 1
8,

3
8,

5
8 and 7

8 and of type p1 (No. 1,

ITE) for all other s.

The layer groups obtained from the space group G are valid

for slices of any thickness in one of the individuals of the twin.

However, since the twin operation is not contained in the

point group of the individuals, a symmetry operation with the

twin operation as linear part can only belong to the layer

group of a slice of finite width around the composition plane.

In general, the width of the slice should be chosen small, but

large enough to be meaningful for the growth process of the

crystal. A typical choice would be to choose the slice such that

it contains the coordination polyhedra of the structure closest

to the composition plane. In the case of aragonite, a further

indication is the periodicity of the layer-group symmetry,

which is 1
4 along the b axis.

Looking at the cell of the twin lattice shown in Fig. 3, one

sees that subdividing the cell into four slices of width 4.22 Å is

a natural choice, since this slice contains the X cations, Y

cations and oxygen atoms closest to the composition plane

(Fig. 4).

The pseudo-eigensymmetry4
E(K) of the slice K at position

y = 0 is found to be a layer group generated by the layer group

L of type p1 induced by G and the restoration operation, which

is a c glide. The group E(K) is of type p2/c (No. 16, ITE, in a

non-conventional setting), the restoration accuracy is

0.2154 Å. This deviation from perfect restoration is the

maximum of the deviations for the split orbits intersecting the

slice. For the X cations, these are the split orbits X3 and X4

with restoration accuracy 0.1155 Å, for the Y cations the split

orbits Y1 and Y2 with restoration accuracy 0.1680 Å intersect

the slice. For the oxygen atoms, the restoration in the slice

actually determines the matching of the split orbits in the

crystallographic orbit approach. For example, the slice

contains two atoms of the split orbit OA2 which are mapped to

two atoms of the orbit OB5 with deviation 0.2154 Å. Similarly,

two oxygen atoms in the split orbit OA3 are matched with two

oxygen atoms in the split orbit OB8, again with deviation

0.2154 Å and two oxygen atoms in OB6 are matched with two

oxygen atoms in OB3 with deviation 0.0718 Å. Since the cell of

the twin lattice is C-centred, the eigensymmetry E(K) of the

slice K at y = 1
4 is isomorphic (conjugate by the centring

translation). Thus the aragonite structure is built from

equivalent slices invariant under the twin operation which are

research papers
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Figure 3
View along the c axis of the slice defined as the thickness limited by the
two pink planes and containing the 12 oxygen atoms (figure drawn with
VESTA: Momma & Izumi, 2011).

Figure 4
View along the a axis of the restored 12 oxygen atoms by the c-glide
reflection.

4 In analogy with the eigensymmetry of a crystallographic orbit, the
eigensymmetry of a slice is defined as the group of motions mapping the set
of atoms in the slice to itself.



centred at y values that are multiples of 1
4. Therefore, the

composition surface does not impose restrictions on the

formation of the twin.

The slice at y = 1
8 provides an interesting variation of the

above analysis. Considering only the X cations closest to the

composition plane at y = 1
8, the eigensymmetry of the slice

contains a translation by 1
2a
0 and a glide reflection t0 with the

twin operation x; y; z as linear part and translation part (1
4,

1
4,

1
2).

Note that the square of the operation t0 is equivalent to the

additional translation by 1
2a
0. Now, extending the slice such that

it contains the 12 oxygen atoms closest to the composition

plane (e.g. by again choosing the width as 1
4 of the twin cell in

the d direction), the operation t0 is no longer a symmetry

operation of the slice. This is due to the fact that the trans-

lation by 1
2a
0 is not a symmetry operation for any of the oxygen

atoms in the aragonite structure. However, it is interesting to

note that t0 restores the left half of the slice (i.e. the half

between y = 0 and y = 1
8) to the right half (between y = 1

8 and y =
1
4) (Table 10) and is therefore only a partial symmetry opera-

tion. This partial symmetry actually also holds for the Y

cations, the carbon atoms close to y = 0 are mapped by t0 to

those close to 1
4, but not vice versa. Although t0 is not a proper

symmetry operation of the slice around y = 1
8, the presence of

this partial symmetry operation mapping one half of a slice to

the other half further increases the probability of the twin to

form, since it occurs precisely in the middle between the slices

with full restoration.

5. Conclusions

The crystallographic orbit approach shows the existence of a

common substructure in aragonite, whose C2/c pseudo-

eigensymmetry contains restoration operations having the

twin operation as linear part. Furthermore, the local analysis

of the composition surface in the aragonite structure, via layer

groups, strongly indicates that the {110} aragonite twin has

a high probability of occurrence, since the structure is

built from slices which are fixed by the twin operation.

These two approaches converge to the conclusion that the

{110} twin in aragonite is structurally favoured and

explain the high frequency of twinning observed in this

mineral.
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Table 10
Oxygen atoms restored by the partial symmetry operation t0 = x + 1

4, y + 1
4, z + 1

2

which is a glide reflection with the plane x, 1
8, z as geometric element and with

intrinsic translation vector (1
4, 0, 1

2).

The atoms in the first column are restored to those in the second column (with the
given accuracy), but not vice versa.

Oxygen atoms to the left of y = 1
8 Oxygen atoms to the right of y = 1

8 dmin (Å)

0.12071, 0.04310, 0.90547 (OA3) 0.39135, 0.21122, 0.41275 (OB4) 0.2154
0.25385, 0.07372, 0.41275 (OB6) 0.49615, 0.17628, 0.91275 (OB7) 0.0718
0.35865, 0.03878, 0.91275 (OB5) 0.62929, 0.20690, 0.40547 (OA4) 0.2067
0.62071, 0.04310, 0.59453 (OA2) 0.89135, 0.21122, 0.08725 (OB1) 0.2154
0.75385, 0.07372, 0.08725 (OB3) 0.99615, 0.17628, 0.58725 (OB2) 0.0718
0.85865, 0.03878, 0.58725 (OB8) 0.12929, 0.20690, 0.09453 (OA1) 0.2067
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